Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.

نویسندگان

  • Robert Ivkov
  • Sally J DeNardo
  • Wolfgang Daum
  • Allan R Foreman
  • Robert C Goldstein
  • Valentin S Nemkov
  • Gerald L DeNardo
چکیده

OBJECTIVE Magnetic nanoparticles conjugated to a monoclonal antibody can be i.v. injected to target cancer tissue and will rapidly heat when activated by an external alternating magnetic field (AMF). The result is necrosis of the microenvironment provided the concentration of particles and AMF amplitude are sufficient. High-amplitude AMF causes nonspecific heating in tissues through induced eddy currents, which must be minimized. In this study, application of high-amplitude, confined, pulsed AMF to a mouse model is explored with the goal to provide data for a concomitant efficacy study of heating i.v. injected magnetic nanoparticles. METHODS Thirty-seven female BALB/c athymic nude mice (5-8 weeks) were exposed to an AMF with frequency of 153 kHz, and amplitude (400-1,300 Oe), duration (1-20 minutes), duty (15-100%), and pulse ON time (2-1,200 seconds). Mice were placed in a water-cooled four-turn helical induction coil. Two additional mice, used as controls, were placed in the coil but received no AMF exposure. Tissue and core temperatures as the response were measured in situ and recorded at 1-second intervals. RESULTS No adverse effects were observed for AMF amplitudes of < or = 700 Oe, even at continuous power application (100% duty) for up to 20 minutes. Mice exposed to AMF amplitudes in excess of 950 Oe experienced morbidity and injury when the duty exceeded 50%. CONCLUSION High-amplitude AMF (up to 1,300 Oe) was well tolerated provided the duty was adjusted to dissipate heat. Results presented suggest that further tissue temperature regulation can be achieved with suitable variations of pulse width for a given amplitude and duty combination. These results suggest that it is possible to apply high-amplitude AMF (> 500 Oe) with pulsing for a time sufficient to treat cancer tissue in which magnetic nanoparticles have been embedded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

Numerical study of induction heating by micro / nano magnetic particles in hyperthermia

Hyperthermia is one of the first applications of nanotechnology in medicine by using micro/nano magnetic particles that act based on the heat of ferric oxide nanoparticles or quantum dots in an external alternating magnetic field. In this study, a two-dimensional model of body and tumor tissues embedded is considered. Initially, the temperature distribution is obtained with respect to tumor pro...

متن کامل

Cancer hyperthermia using magnetic nanoparticles.

Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increa...

متن کامل

New Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer under the Effect of a Magnetic Field: An Experimental Study

Fe3O4 nanofluid fully developed forced convection inside a copper tube is empirically investigated under the effect of a magnetic field. All of the investigations are performed under laminar flow regime (670≤Re≤1700) and thermal boundary conditions of the tube with uniform thermal flux. The tube is under the effect of a magnetic field in certain points. This research aims to study the effect of...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 11 19 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005